256x^2+81x^2=189

Simple and best practice solution for 256x^2+81x^2=189 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 256x^2+81x^2=189 equation:



256x^2+81x^2=189
We move all terms to the left:
256x^2+81x^2-(189)=0
We add all the numbers together, and all the variables
337x^2-189=0
a = 337; b = 0; c = -189;
Δ = b2-4ac
Δ = 02-4·337·(-189)
Δ = 254772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{254772}=\sqrt{36*7077}=\sqrt{36}*\sqrt{7077}=6\sqrt{7077}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{7077}}{2*337}=\frac{0-6\sqrt{7077}}{674} =-\frac{6\sqrt{7077}}{674} =-\frac{3\sqrt{7077}}{337} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{7077}}{2*337}=\frac{0+6\sqrt{7077}}{674} =\frac{6\sqrt{7077}}{674} =\frac{3\sqrt{7077}}{337} $

See similar equations:

| 3z²+2z-4=0 | | 12.35+0.08(x+3)=12.85-0.07 | | 3x-5=2.9 | | 18(x-1)=120 | | 8x+77=101 | | Q=1x+4 | | 2(x-5)+6=2(2x+2) | | -4=-14+2p | | x+10(x+2)^0.5-22=0 | | N=0.08r+7,400 | | 10x-24=8x+2 | | -5x+9=-4x+7 | | 256x^2+81x^2=30.25 | | 12.35+0.05(x+3)=12.85-0.07 | | (x-2)^2=x^2 | | 0.14(y-8)+0.18y=0.12y-2.7 | | 2(6y+5)-12y=10 | | 4.5=18-4.5k | | 4.8=3(x-9) | | 8x^2=27x | | 15.74+0.09=16.49-0.11x | | 2y²+5y+3=0 | | 2x+3+2x-5=2 | | 72=3x-2 | | 3(4y+3)=12y+ | | 1x+8x=67,5 | | 5^x+1+5^x=750 | | 27+-4=3y-5 | | 10^y=8 | | 4(3c-1)=20 | | 6(x+19)=1,038 | | 2z=16+z |

Equations solver categories